资源类型

期刊论文 168

年份

2023 8

2022 18

2021 21

2020 16

2019 7

2018 11

2017 9

2016 7

2015 10

2014 6

2013 6

2012 9

2011 4

2010 6

2009 11

2008 6

2007 7

2006 1

2005 1

2004 1

展开 ︾

关键词

光催化 2

2 1

4-二硝基茴香醚 1

H2S 1

MOF基催化剂 1

P4 1

PH3 1

一氧化碳氧化 1

傅里叶变换红外成像 1

催化剂 1

催化氧化 1

光催化氧化 1

冷泉 1

动态清洗 1

协同效应 1

双金属羟基氧化物 1

吸附 1

固定床 1

多样性指标 1

展开 ︾

检索范围:

排序: 展示方式:

Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1427-1443 doi: 10.1007/s11705-021-2108-0

摘要: The dye industry produces a large amount of hazardous wastewater every day worldwide, which brings potential threaten to the global environment. As an excellent method for removal of water chroma and chemical oxygen demand, electrocatalytic methods are currently widely used in the treatment of dye wastewater. The selection and preparation of electrode materials and electrocatalysts play an important role on the electrocatalytic treatment. The aim of this paper is to introduce the most excellent high-efficiency electrode materials and electrocatalysts in the field of dye wastewater treatment. Many electrode materials such as metal electrode materials, boron-doped diamond anode materials and three-dimensional electrode are introduced in detail. Besides, the mechanism of electrocatalytic oxidation is summarized. The composite treatment of active electrode and electrocatalyst are extensively examined. Finally, the progress of photo-assisted electrocatalytic methods of dye wastewater and the catalysts are described.

关键词: electrocatalytic oxidation     electrode     electrocatalysis     dye wastewater    

Noble-metal-free cobalt hydroxide nanosheets for efficient electrocatalytic oxidation

Jie Lan, Daizong Qi, Jie Song, Peng Liu, Yi Liu, Yun-Xiang Pan

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 948-955 doi: 10.1007/s11705-020-1920-2

摘要: Cobalt hydroxide has been emerging as a promising catalyst for the electrocatalytic oxidation reactions, including the oxygen evolution reaction (OER) and glucose oxidation reaction (GOR). Herein, we prepared cobalt hydroxide nanoparticles (CoHP) and cobalt hydroxide nanosheets (CoHS) on nickel foam. In the electrocatalytic OER, CoHS shows an overpotential of 306 mV at a current density of 10 mA·cm . This is enhanced as compared with that of CoHP (367 mV at 10 mA·cm ). In addition, CoHS also exhibits an improved performance in the electrocatalytic GOR. The improved electrocatalytic performance of CoHS could be due to the higher ability of the two-dimensional nanosheets on CoHS in electron transfer. These results are useful for fabricating efficient catalysts for electrocatalytic oxidation reactions.

关键词: electrocatalytic oxidation     cobalt hydroxide     nanosheet     water     glucose    

Enhancement of the electrocatalytic oxidation of antibiotic wastewater over the conductive black carbon-PbO

Xiangyu Wang, Yu Xie, Guizhen Yang, Jiming Hao, Jun Ma, Ping Ning

《环境科学与工程前沿(英文)》 2020年 第14卷 第2期 doi: 10.1007/s11783-019-1201-9

摘要: • A novel conductive carbon black modified lead dioxide electrode is synthesized. • The modified PbO2 electrode exhibits enhanced electrochemical performances. • BBD method could predict optimal experiment conditions accurately and reliably. • The modified electrode possesses outstanding reusability and safety. The secondary pollution caused by modification of an electrode due to doping of harmful materials has long been a big concern. In this study, an environmentally friendly material, conductive carbon black, was adopted for modification of lead dioxide electrode (PbO2). It was observed that the as-prepared conductive carbon black modified electrode (C-PbO2) exhibited an enhanced electrocatalytical performance and more stable structure than a pristine PbO2 electrode, and the removal efficiency of metronidazole (MNZ) and COD by a 1.0% C-PbO2 electrode at optimal conditions was increased by 24.66% and 7.01%, respectively. Results revealed that the electrochemical degradation of MNZ wastewater followed pseudo-first-order kinetics. This intimates that the presence of conductive carbon black could improve the current efficiency, promote the generation of hydroxyl radicals, and accelerate the removal of MNZ through oxidation. In addition, MNZ degradation pathways through a C-PbO2 electrode were proposed based on the identified intermediates. To promote the electrode to treat antibiotic wastewater, optimal experimental conditions were predicted through the Box-Behnken design (BBD) method. The results of this study suggest that a C-PbO2 electrode may represent a promising functional material to pretreat antibiotic wastewaters.

关键词: Conductive carbon black     PbO2 electrode     Metronidazole     Electrochemical oxidation     Box-Behnken design-response surface method    

Multivalent manganese oxides with high electrocatalytic activity for oxygen reduction reaction

Xiangfeng Peng, Zhenhai Wang, Zhao Wang, Yunxiang Pan

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 790-797 doi: 10.1007/s11705-018-1706-y

摘要: A noble-metal-free catalyst based on both Mn O and MnO was prepared by using the dielectric barrier discharge technique at moderate temperature. The prepared catalyst shows a higher electrocatalytic activity towards the oxygen reduction reaction than the catalyst prepared by using the traditional calcination process. The enhanced activity could be due to the coexistence of manganese ions with different valences, the higher oxygen adsorption capacity, and the suppressed aggregation of the catalyst nanoparticles at moderate temperature. The present work would open a new way to prepare low-cost and noble-metal-free catalysts at moderate temperature for more efficient electrocatalysis.

关键词: oxygen reduction reaction     manganese oxides     mixed valences of manganese     oxygen adsorption     dielectric barrier discharge    

Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction

Jing WANG, Hua WANG, Zhenzhen HAN, Jinyu HAN

《化学科学与工程前沿(英文)》 2015年 第9卷 第1期   页码 57-63 doi: 10.1007/s11705-014-1444-8

摘要: A porous Pb foam was fabricated electrochemically at a copper substrate and then used as the cathode for the electroreduction of CO . The surface morphology and composition of the porous Pb electrode was characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy and selected area electron diffraction. The honeycomb-like porous structure was composed of needle-like Pb deposits. Cyclic voltammetry studies demonstrated that the porous Pb electrode had better electrocatalytic performance for the formation of formic acid from CO compared with a Pb plate electrode. The increase in current density was due to the large surface area of the porous Pb electrode, which provides more active sites on the electrode surface. The improved formic acid selectivity was due to the morphology of the roughened surface, which contains significantly more low-coordination sites which are more active for CO reduction. The highest current efficiency for formic acid was 96.8% at -1.7 V versus saturated calomel electrode at 5 °C. This porous Pb electrode with good catalytic abilities represents a new 3D porous material with applications for the electroreduction of CO .

关键词: electrodeposited porous Pb     carbon dioxide     electroreduction     formic acid    

Synthesis and electrocatalytic property of cubic and spherical nanoparticles of cobalt platinum alloys

Xiaowei TENG, Hong YANG,

《化学科学与工程前沿(英文)》 2010年 第4卷 第1期   页码 45-51 doi: 10.1007/s11705-009-0308-0

摘要: This paper describes the morphological control and electrocatalytic property of CoPt nanoparticles. Both cubic and spherical CoPt nanoparticles were made using cobalt carbonyl and platinum 2,4-pentanedionate under different reaction temperatures in the presence of capping reagents, which included adamantanecarboxylic acid and hexadecylamine. Effects of heterogeneous species on shape of the CoPt nanoparticles were examined by replacing cobalt carbonyl with silver acetylacetonate. Our results suggest that the formation of different shapes of CoPt particles could be attributed to the affinity between cobalt and platinum, and the effects of capping agents. The size and shape dependent electrocatalytic properties of these nanoparticles were examined based on the direct methanol oxidation reaction.

关键词: spherical     2     4-pentanedionate     adamantanecarboxylic     acetylacetonate     electrocatalytic    

Overoxidized poly(3,4-ethylenedioxythiophene)-overoxidized polypyrrole composite films with enhanced electrocatalytic

《化学科学与工程前沿(英文)》 2023年 第17卷 第6期   页码 735-748 doi: 10.1007/s11705-022-2262-z

摘要: In this study, a simple and effective method was proposed to improve the electrocatalytic ability of overoxidized poly(3,4-ethylenedioxythiophene)-overoxidized polypyrrole composite films modified on glassy carbon electrode for rutin and luteolin determination. The composite electrode was prepared by cyclic voltammetry copolymerization with LiClO4-water as the supporting electrolyte. The peak current of rutin and luteolin on the composite electrode gradually decreased or even disappeared with the increase in the positive potential limit. After incubation in NaOH–ethanol solution with a volume ratio of 1:1, the composite electrodes prepared at positive potential limit greater than 1.5 V exhibited enhanced differential pulse voltammetry peak currents, reduced charge transfer resistance, larger effective specific surface area and higher electron transfer rate constant. The composite electrode prepared in the potential range of 0–1.7 V showed optimal electrocatalytic performance. The X-ray photoelectron spectroscopy results indicated that the content of –SO2/–SO and –C=N– groups in the composite film increased significantly after incubation. Further, the Raman spectra and Fourier transform infrared spectra revealed that the thiophene ring structure changed from benzene-type to quinone-type, and the quinone-type pyrrole ring was formed. The electrocatalytic mechanism of the composite film was proposed based on the experimental results and further verified by Density Functional Theory calculation.

关键词: overoxidized poly(3     4-ethylenedioxythiophene)-overoxidized polypyrrole     rutin     luteolin     incubation     electrocatalytic mechanism    

Revisiting solar hydrogen production through photovoltaic-electrocatalytic and photoelectrochemical water

《能源前沿(英文)》 2021年 第15卷 第3期   页码 596-599 doi: 10.1007/s11708-021-0745-0

摘要: Photoelectrochemical (PEC) water splitting is regarded as a promising way for solar hydrogen production, while the fast development of photovoltaic-electrolysis (PV-EC) has pushed PEC research into an embarrassed situation. In this paper, a comparison of PEC and PV-EC in terms of efficiency, cost, and stability is conducted and briefly discussed. It is suggested that the PEC should target on high solar-to-hydrogen efficiency based on cheap semiconductors in order to maintain its role in the technological race of sustainable hydrogen production.

关键词: hydrogen production     photovoltaic     electrocatalysis     photoelectrocatalysis     water splitting    

A 3D porous WP2 nanosheets@carbon cloth flexible electrode for efficient electrocatalytic hydrogen evolution

Mingyu Pi, Xiaodeng Wang, Dingke Zhang, Shuxia Wang, Shijian Chen

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 425-432 doi: 10.1007/s11705-018-1726-7

摘要:

Self-standing porous WP2 nanosheet arrays on carbon fiber cloth (WP2 NSs/CC) were synthesized and used as a 3D flexible hydrogen evolution electrode. Because of its 3D porous nanoarray structure, the WP2 NSs/CC exhibits a remarkable catalytic activity and a high stability. By using the experimental measurements and first-principle calculations, the underlying reasons for the excellent catalytic activity were further explored. Our work makes the present WP2 NSs as a promising electrocatalyst for hydrogen evolution and provides a way to design and fabricate efficient hydrogen evolution electrodes through 3D porous nano-arrays architecture.

关键词: WP2     nanosheet arrays     hydrogen evolution electrocatalyst     flexible electrode    

Interface engineering for enhancing electrocatalytic oxygen evolution reaction of CoS/CeO heterostructures

《化学科学与工程前沿(英文)》 2022年 第16卷 第3期   页码 376-383 doi: 10.1007/s11705-021-2062-x

摘要: To realize renewable energy conversion, it is important to develop low-cost and high-efficiency electrocatalyst for oxygen evolution reaction. In this communication, a novel bijunction CoS/CeO2 electrocatalyst grown on carbon cloth is prepared by the interface engineering. The interface engineering of CoS and CeO2 facilitates a rapid charge transfer from CeO2 to CoS. Such an electrocatalyst exhibits outstanding electrocatalytic activity with a low overpotential of 311 mV at 10 mA∙cm−2 and low Tafel slope of 76.2 mV∙dec–1, and is superior to that of CoS (372 mV) and CeO2 (530 mV) counterparts. And it has long-term durability under alkaline media.

关键词: interface engineering     CoS/CeO2     electrodeposition     electrocatalyst     oxygen evolution reaction    

Influence of Fe on electrocatalytic activity of iron-nitrogen-doped carbon materials toward oxygen reduction

Lin LI, Cehuang FU, Shuiyun SHEN, Fangling JIANG, Guanghua WEI, Junliang ZHANG

《能源前沿(英文)》 2022年 第16卷 第5期   页码 812-821 doi: 10.1007/s11708-020-0669-0

摘要: The development of highly active nitrogen-doped carbon-based transition metal (M-N-C) compounds for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs) greatly helps reduce fuel cell cost, thus rapidly promoting their commercial applications. Among different M-N-C electrocatalysts, the series of Fe-N-C materials are highly favored because of their high ORR activity. However, there remains a debate on the effect of Fe, and rare investigations focus on the influence of Fe addition in the second heat treatment usually performed after acid leaching in the catalyst synthesis. It is thus very critical to explore the influences of Fe on the ORR electrocatalytic activity, which will, in turn, guide the design of Fe-N-C materials with enhanced performance. Herein, a series of Fe-N-C electrocatalysts are synthesize and the influence of Fe on the ORR activity are speculated both experimentally and theoretically. It is deduced that the active site lies in the structure of Fe-N , accompanied with the addition of appropriate Fe, and the number of active sites increases without the occurrence of agglomeration particles. Moreover, it is speculated that Fe plays an important role in stabilizing N as well as constituting active sites in the second pyrolyzing process.

关键词: oxygen reduction reaction     Fe-N-C     active sites     Fe addition     second heat treatment    

Pd/Fe3O4 supported on bio-waste derived cellulosic-carbon as a nanocatalyst for C–C coupling and electrocatalytic

《化学科学与工程前沿(英文)》 2022年 第16卷 第10期   页码 1514-1525 doi: 10.1007/s11705-022-2158-y

摘要: The current work describes the synthesis of a new bio-waste derived cellulosic-carbon supported-palladium nanoparticles enriched magnetic nanocatalyst (Pd/Fe3O4@C) using a simple multi-step process under aerobic conditions. Under mild reaction conditions, the Pd/Fe3O4@C magnetic nanocatalyst demonstrated excellent catalytic activity in the Hiyama cross-coupling reaction for a variety of substrates. Also, the Pd/Fe3O4@C magnetic nanocatalyst exhibited excellent catalytic activity up to five recycles without significant catalytic activity loss in the Hiyama cross-coupling reaction. Also, we explored the use of Pd/Fe3O4@C magnetic nanocatalyst as an electrocatalyst for hydrogen evolution reaction. Interestingly, the Pd/Fe3O4@C magnetic nanocatalyst exhibited better electrochemical activity compared to bare carbon and magnetite (Fe3O4 nanoparticles) with an overpotential of 293 mV at a current density of 10 mA·cm–2.

关键词: bio-waste     cellulosic-carbon     Pd/Fe3O4     Hiyama cross-coupling     hydrogen evolution reaction     recyclability    

Phenolic compounds removal by wet air oxidation based processes

Linbi Zhou, Hongbin Cao, Claude Descorme, Yongbing Xie

《环境科学与工程前沿(英文)》 2018年 第12卷 第1期 doi: 10.1007/s11783-017-0970-2

摘要: Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) are efficient processes to degrade organic pollutants in water. In this paper, we especially reviewed the WAO and CWAO processes for phenolic compounds degradation. It provides a comprehensive introduction to the CWAO processes that could be beneficial to the scientists entering this field of research. The influence of different reaction parameters, such as temperature, oxygen pressure, pH, stirring speed are analyzed in detail; Homogenous catalysts and heterogeneous catalysts including carbon materials, transitional metal oxides and noble metals are extensively discussed, among which Cu based catalysts and Ru catalysts were shown to be the most active. Three different kinds of the reactor implemented for the CWAO (autoclave, packed bed and membrane reactors) are illustrated and compared. To enhance the degradation efficiency and reduce the cost of the CWAO process, biological degradation can be combined to develop an integrated technology.

关键词: Wet air oxidation     Catalytic wet air oxidation     Phenolic compounds     Heterogeneous catalysts     Mechanism    

Enhanced electrocatalytic performance of ultrathin PtNi alloy nanowires for oxygen reduction reaction

Hongjie ZHANG, Yachao ZENG, Longsheng CAO, Limeng YANG, Dahui FANG, Baolian YI, Zhigang SHAO

《能源前沿(英文)》 2017年 第11卷 第3期   页码 260-267 doi: 10.1007/s11708-017-0499-x

摘要: In this paper, ultrathin Pt nanowires (Pt NWs) and PtNi alloy nanowires (PtNi NWs) supported on carbon were synthesized as electrocatalysts for oxygen reduction reaction (ORR). Pt and PtNi NWs catalysts composed of interconnected nanoparticles were prepared by using a soft template method with CTAB as the surface active agent. The physical characterization and electrocatalytic performance of Pt NWs and PtNi NWs catalysts for ORR were investigated and the results were compared with the commercial Pt/C catalyst. The atomic ratio of Pt and Ni in PtNi alloy was approximately 3 to 1. The results show that after alloying with Ni, the binding energy of Pt shifts to higher values, indicating the change of its electronic structure, and that Pt Ni NWs catalyst has a significantly higher electrocatalytic activity and good stability for ORR as compared to Pt NWs and even Pt/C catalyst. The enhanced electrocatalytic activity of Pt Ni NWs catalyst is mainly resulted from the downshifted-band center of Pt caused by the interaction between Pt and Ni in the alloy, which facilitates the desorption of oxygen containing species (O or OH ) and the release of active sites.

关键词: PtNi alloy     nanowires     oxygen reduction reaction     enhanced activity     good stability    

β-Cyclodextrin promoted oxidation of primary amines to nitriles in water

Dongpo SHI, Hongbing JI, Zhong LI

《化学科学与工程前沿(英文)》 2009年 第3卷 第2期   页码 196-200 doi: 10.1007/s11705-009-0051-6

摘要: A facile, efficient and substrate-selective oxidation of the primary amines with NaClO as oxidant catalyzed by cyclodextrin ( CD) has been developed in water for the first time, and the behavior of cyclodextrin that catalyzed the primary amines to nitriles in water was investigated. It was found that the primary amines which could form host-guest complexes with cyclodextrin were oxidized to nitriles with excellent yields at ambient temperature. The results show that cyclodextrin worked not only as a solubilizing agent but also as a catalyst in these reactions.

关键词: substrate-selective     amines oxidation     β-cyclodextrin    

标题 作者 时间 类型 操作

Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater

期刊论文

Noble-metal-free cobalt hydroxide nanosheets for efficient electrocatalytic oxidation

Jie Lan, Daizong Qi, Jie Song, Peng Liu, Yi Liu, Yun-Xiang Pan

期刊论文

Enhancement of the electrocatalytic oxidation of antibiotic wastewater over the conductive black carbon-PbO

Xiangyu Wang, Yu Xie, Guizhen Yang, Jiming Hao, Jun Ma, Ping Ning

期刊论文

Multivalent manganese oxides with high electrocatalytic activity for oxygen reduction reaction

Xiangfeng Peng, Zhenhai Wang, Zhao Wang, Yunxiang Pan

期刊论文

Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction

Jing WANG, Hua WANG, Zhenzhen HAN, Jinyu HAN

期刊论文

Synthesis and electrocatalytic property of cubic and spherical nanoparticles of cobalt platinum alloys

Xiaowei TENG, Hong YANG,

期刊论文

Overoxidized poly(3,4-ethylenedioxythiophene)-overoxidized polypyrrole composite films with enhanced electrocatalytic

期刊论文

Revisiting solar hydrogen production through photovoltaic-electrocatalytic and photoelectrochemical water

期刊论文

A 3D porous WP2 nanosheets@carbon cloth flexible electrode for efficient electrocatalytic hydrogen evolution

Mingyu Pi, Xiaodeng Wang, Dingke Zhang, Shuxia Wang, Shijian Chen

期刊论文

Interface engineering for enhancing electrocatalytic oxygen evolution reaction of CoS/CeO heterostructures

期刊论文

Influence of Fe on electrocatalytic activity of iron-nitrogen-doped carbon materials toward oxygen reduction

Lin LI, Cehuang FU, Shuiyun SHEN, Fangling JIANG, Guanghua WEI, Junliang ZHANG

期刊论文

Pd/Fe3O4 supported on bio-waste derived cellulosic-carbon as a nanocatalyst for C–C coupling and electrocatalytic

期刊论文

Phenolic compounds removal by wet air oxidation based processes

Linbi Zhou, Hongbin Cao, Claude Descorme, Yongbing Xie

期刊论文

Enhanced electrocatalytic performance of ultrathin PtNi alloy nanowires for oxygen reduction reaction

Hongjie ZHANG, Yachao ZENG, Longsheng CAO, Limeng YANG, Dahui FANG, Baolian YI, Zhigang SHAO

期刊论文

β-Cyclodextrin promoted oxidation of primary amines to nitriles in water

Dongpo SHI, Hongbing JI, Zhong LI

期刊论文